UNIVERSITI TEKNOLOGI MARA

AN ENHANCEMENT OF ENERGY EFFICIENCY BASED ON THE VOLTAGE REDUCTION WITH OPTIMAL CAPACITOR PLACEMENT AND SIZING

ZILAILA BINTI ZAKARIA

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

January 2017
ABSTRACT

Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study one technique particle swarm optimization with the pre-determined of busbar or locations for the power-loss-index (PLI) combine with conservative voltage reduction (CVR). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed optimization technique. Satisfying these four constraints with any numerical set of variables means that the physical characteristics of the power system for optimization technique are fulfilled. These constrained optimization maybe used to minimize cost functions, representing all operational limits of the actual network In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the pragmatic electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.